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A dental articulator is a mechanical device used to simulate the relative position and motion 

between the upper and lower jaw when constructing and testing dental prostheses.  

Typically, it can be adjusted to approximate patient-specific jaw kinematics in order to 

analogue the static relationship and specific motions of a patient’s mandible to maxilla.  

However, the use of dental articulators is essentially a trial-and-error method in order to 

fine-tune fit and function of a dental prosthesis. Some of the most advanced current dental 

articulators can reproduce the position and the motion passively; furthermore, dentists need 

special training for measuring patients’ maxillofacial dimensions. Moreover, masticatory 

robots developed for training purposes cannot mimic individual patients’ jaw motions.  

The thesis presents the design and optimization of parallel robot for dental articulation. In 

this design we propose a robotic articulator suitable for reproducing tracked movements of 

an individual patient’s jaw.  Based on an asymmetric-leg parallel structure, dimensional 

synthesis is performed to optimize performance over the range of motion typical of the 

human jaw. The resulting robotic device is expected to improve workflow in the restoration 

of dental implants. 

Keywords: dental, articulator, jaw, motion, position, robotics, mandible, maxilla, condyle, 

parallel robot, dental implant. 
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“The problem of articulation could only be solved when dentistry succeeded to record and 

reproduce jaw movements of individual patients.”     

--A. Gysi 1907        
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List of terms and Symbols 
 

Terms 

 

Alveolar bone – the thickened ridge of bone that contains the tooth sockets (dental 

alveoli) on bones that hold teeth. 

Arcon articulator – an articulator with the equivalent condylar guides fixed to the upper 

member and the hinge axis to the lower member.   

Articular disc – a thin, oval plate of fibrocartilage present in several joints which 

separates synovial cavities 

Articular eminence – a bony eminence on the temporal bone in the skull. 

Balanced occlusion – the simultaneous contacting of the upper and lower teeth on the 

right and left and in the anterior and posterior occlusal areas in centric and eccentric 

positions within the functional range; used primarily in reference to the mouth, but also 



ix 
 

arranged and observed on articulators, developed to prevent tipping or rotating of  denture 

bases in relation to supporting structures. 

Bennett angle – the angle formed by the sagittal plane and the path of the advancing 

condyle during lateral mandibular movements as viewed in horizontal plane.  

Bite block – a wedge-shaped implement used in dentistry for dentists working with 

children and other patients who have difficulty keeping their mouths open wide and steady 

during a procedure, or during procedures where the patient is sedated. 

Rami – plural of ramus that is a small branchlike structure extending from a larger one 

or dividing into two or more parts, such as a branch of a nerve or artery or one of the rami 

of the blood vessel or nerve. 

Bridge – A bridge is a fixed dental restoration (a fixed dental prosthesis) used to 

replace one or more missing teeth by joining an artificial tooth definitively to adjacent teeth 

or dental implants. 

Bristol parallel robot – a parallel robot to test dental components and materials. 

Capsule ligaments – found on the outer surface of the capsule, simply thickenings of 

the fibrous capsule itself that take the form of either elongated bands or triangles, the fibers 

of which radiate from a small area of one articulating bone to a line upon its mating fellow. 

Cast – a positive copy or mold of the tissues of the jaws, made in an impression, and 

over which denture bases or other restorative materials may be fabricated. 

Cementum – a layer of bonelike, mineralized tissue covering the dentin of the root and 

neck of a tooth that anchors the fibers of the periodontal ligament. 



x 
 

Centric relation (CR) – the mandibular jaw position in which the head of the condyle is 

situated as far posteriorly and superiorly as it possibly can within the mandibular 

fossa/glenoid fossa. 

Collateral ligaments – one of a pair of ligaments occurring on the medial or lateral sides 

of hinge joints that typically serve a major role in uniting the articulating bones and 

establish the radius of movement for the joint. 

Condylar – is the round prominence at the end of a bone, most often part of a joint - an 

articulation with another bone.  

Degree of freedom (DOF) – the number of parameters of the system that may vary 

independently.  

Dental model – something that represents or simulates denture or teeth; a 

dental replica. 

Gingiva – the part of the oral mucosa covering the tooth-bearing border of the jaw; 

called also gum.  

Global dental arch – the curved composite structure of the natural dentition and the 

residual ridge, or the remains thereof after the loss of some or all-natural teeth. 

Gnathic – pertaining to the jaw or cheeks. 

Implant (Endosseous) – a surgical component that interfaces with the bone of the jaw 

or skull to support a dental prosthesis such as a crown, bridge, denture, facial prosthesis or 

to act as an orthodontic anchor. 



xi 
 

Incisal guidance – the influence on mandibular movements caused by the contacting 

surfaces of the mandibular and maxillary anterior teeth during eccentric excursions. 

Joint capsule – the saclike envelope that encloses the cavity of a synovial joint by 

attaching to the circumference of the articular end of each involved bone 

Mandible – the largest, strongest and lowest bone in the human face 

Mandibular fossa – the depression in the temporal bone that articulates with the 

mandible.  

Maxilla – the upper jawbone formed from the fusion of two maxillary bones.  

Midpalatal suture – the lines of junction between the palatal bones of the skull at the 

midline. 

Nonarcon articulator – an articulator with the equivalent condylar guides attached to 

the lower member and the hinge axis to the upper member. 

Occlusal relationship – the relationship of the mandibular teeth to the maxillary teeth 

when they are in a defined contact position. 

Orthodontics – a specialty field of dentistry that deals primarily with malpositioned 

teeth and the jaws: their diagnosis, prevention and correction. 

Periodontal ligament – a group of specialized connective tissue fibers that essentially 

attach a tooth to the surrounding alveolar bone  

Prosthodontics – the area of dentistry that focuses on dental prostheses. 



xii 
 

Sphenomandibular ligament – a flat, thin band which is attached superiorly to the spina 

angular surface (spine) of the sphenoid bone, and, becoming broader as it descends, is fixed 

to the lingual of the mandibular foramen. 

Stylomandibular ligament – the thickened posterior portion of the investing cervical 

fascia, which extends from near the apex of the styloid process of the temporal bone to the 

angle and posterior border of the angle of the mandible, between the masseter and medial 

pterygoid. 

Synovial articulation – also known as diarthrosis, joins bones with a fibrous joint 

capsule that is continuous with the periosteum of the joined bones, constitutes the outer 

boundary of a synovial cavity, and surrounds the bones' articulating surfaces. 

Temporal bone – situated at the sides and base of the skull, and lateral to the temporal 

lobes of the cerebral cortex. 

Temporomandibular ligament – consists of two short, narrow fasciculi, one in front of 

the other, attached, above, to the lateral surface of the zygomatic arch and to the tubercle 

on its lower border; below, to the lateral surface and posterior border of the neck of 

the mandible. 

The lateral pterygoid muscle – a muscle of mastication with two heads. It lies 

superiorly to the medial pterygoid. The superior head originates on the infratemporal 

surface and infratemporal crest of the greater wing of the sphenoid bone and inserts onto 

the articular disc and fibrous capsule of the temporomandibular joint. The inferior head 

originates on the lateral surface of the lateral pterygoid and inserts onto the neck of 

condyloid process of the mandible. 
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The masseter muscle – The major jaw muscle, which participates in protraction, 

retraction and side to side movement of the jaw. Its superficial portion originates from the 

maxillary process of the zygomatic bone, and the anterior two-thirds of the inferior border 

of the zygomatic arch and inserts into the angle and ramus of the mandible; its deep portion 

originates from the deep and medical surface of the zygomatic arch and inserts the angle 

and ramus of the mandible. 

The medial pterygoid muscle – a thick, quadrilateral muscle of mastication. The bulk 

of the muscle arises as a deep head from just above the medial surface of the lateral 

pterygoid plate. The smaller, superficial head originates from the maxillary tuberosity and 

the pyramidal process of the palatine bone. Both are inserted by a strong tendinous lamina, 

into the lower and back part of the medial surface of the ramus and angle of the mandible, 

as high as the mandible foramen.  

The temporalis muscle – one of the muscles of mastication. It is a broad, fan-shaped 

muscle on each side of the head that fills the temporal fossa, superior to the zygomatic arch 

so it covers much of the temporal bone. It arises from the temporal fossa and the deep part 

of temporal fascia. It passes medial to the zygomatic arch and forms a tendon which inserts 

onto the coronoid process of the mandible, with its insertion extending into the retromolar 

fossa posterior to the most distal mandibular molar. 

TMJ ligaments – Bundles of a tough, fibrous, elastic protein called collagen that act to 

bind and support the TMJ. 

U-shaped bone – also called tongue bone or hyoid bone, a horseshoe-shaped bone 

situated in the anterior midline of the neck between the chin and the thyroid cartilage. 
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Workspace – the set of points that can be reached by its end-effector or, in other words, 

it is the space in which the robot works and can be either a 3D space or a 2D surface. 

2. Symbols 

 

6-RSS: 6-leg revolute/spherical/spherical parallel robot architecture 

6-SPS: 6-leg spherical/prismatic/spherical parallel robot architecture 

Ai: a point at first joint 

ai: an angle about z-axis at fixed platform 

Bi: a point at second joint 

c: cosine 

Ci: a point at third joint 

CR: Centric relation 

F: degrees of freedom of the robot 

fi: degree of relative motion permitted by joint i 

fp: the total number of passive degrees of freedom 

fzero: a Matlab function 

Hmax: the maximum protrusion   

j: the number of binary joints of the mechanism 

ll1: the first link of leg 
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ll2: the second link of leg 

Lmax: the maximum mouth-opening movement   

n: the number of links in the manipulator including the base 

O: fixed frame 

OA, OB, OC, OD: vector points as referenced to frame O 

P: moving frame 

R: rotation matrix 

r1i: the distance from center of fixed frame to first joint 

r2i: the distance from center of moving frame to third joint 

Rx,ϕ: rotation matrix about x-axis with pitch angle 

Ry,: rotation matrix about y-axis with yaw angle 

 Rz, : rotation matrix about z-axis with roll angle 

s : sine 

TMJ: temporomandibular joints 

Wmax: the maximum protrusion   

WY-1: first generation of Waseda Yamanashi robot 

xD,yD,zD: values of point D along x, y, z-axes  

z1: the height of the fixed frame on z-axis 



xvi 
 

z2: the height of the third joint on z-axis 

βi: an angle about z-axis at moving frame platform 

θ: the variable, rotational angle of the actuator  

λ: an angle about z-axis at fixed platform 

ϕ, , : pitch, yaw, roll angles 
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Chapter 1: Introduction 
 

An articulator, which is used to visualize occlusal relationships and enables dentists to 

work on fitting dental restorations without continual direct contact with the patient, is a 

mechanical device used in dentistry to which casts of the maxillary (upper) and mandibular 

(lower) teeth are fixed, reproducing recorded positions of the mandible in relation to the 

maxilla. Articulators are adjustable to replicate the kinematic topology of the patient’s jaw 

by changing joint locations relative to the frame of reference. Articulators are mainly used 

for studying individual teeth and full dental arches for diagnosis and treatment planning as 

well as allowing adjustment of fixed and removable prostheses and indirect dental 

restorations. Therefore, the objective of the articulator is to produce and reproduce occlusal 

relationships extraorally [2]. An articulator assists not only in the fabrication of removable 

prosthodontic appliances, fixed prosthodontic restorations, and orthodontic appliances but 

also in maxillofacial surgeries as well as oral implantation [1]. Hence, the articulator is the 

cornerstone requirement for prosthodontics, restorative dentistry, and dental surgery as 

well as one of the core devices in dental education and research. 

1.1 Historical background and current devices in practice 

 

For over 200 years, dentists have been trying to develop methods and devices to 

duplicate positions and movements of dentition according to the relationship of the human 

skull. Since unmounted casts give only basic information about the patient’s occlusal 

relationship, copying positions and movements of the jaw is a significant step for achieving 

a complete analysis of the functional relationships. From the first articulator (slab 

articulator) to the modern articulator, dentists have developed many instruments to 
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simulate jaw movements and record jaw positions, which help to maintain casts centrally 

align ed and in predetermined vertical positions, perform functional analysis of occlusion, 

pursue occlusal equilibration, and carry out reconstruction of occlusion [3]. Generally, 

there are four different types of designs of articulators: 

• Simple hinge articulator – provides a single hinge without lateral 

movements. It has one degree of freedom. Two parts of it rotate around the hinge 

and give the very basic relationship between maxilla and mandible relationship. 

The simple hinge articulator has limited value in dentistry. It allows a preliminary 

evaluation of static tooth arrangements on study models or assists discussion with 

patients [16]. 

• Average value articulator – has its condylar angle fixed at 30°. It has an 

adjustable incisal guidance without provision for condylar side shift adjustment. 

It has 3 degrees of freedom. But its limitation is significant in practice since the 

condyles’ angles are fixed. The average value articulator produces an 

approximation of condyles’ movements and balanced occlusion. [17]. 

• Semi-adjustable articulator – only allows adjustment of condylar inclination 

and Bennett angle or progressive side shift in most cases. In this design, 

intercondylar width is usually fixed with certain width settings. Thus, this 

articulation is improved based on the average value articulator. However, in this 

articulator, the simulated TMJ is mechanically simplified and it does not produce 

certain condylar movements. The articulators, both arcon, and nonarcon, allow 

realistic approximation of anatomical relationships of teeth and the arch form of 

articulated casts, condylar relationships, and intercondylar distance. However, 
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raising the height of its pin without using a hinge axis face-bow transfer would 

increase the vertical dimension of occlusion, which in turn will create errors. 

• Fully adjustable articulator – is designed to duplicate TMJ joints’ features 

with a series of condylar adjustments, plus it allows curved condylar translation 

paths. Having its 6 degrees of freedom, it can fully duplicate the jaw movements 

and provides the most accurate duplication of mandible relationships among 

those articulators. But the complexity of the device such as complicated condylar 

adjustments and technique-sensitivity makes it unpopular in dental practice. 

 The articulators mentioned above are most common in clinical practice, education, and 

studies. However, in addition to their shortcomings discussed above, all of those 

articulators are passive devices, which need manual adjustment as well as special dental 

training. The use of a passive mechanical device to replicate active jaw motions is 

inherently limited, and leads to a trial-and-error approach to fitting and adjusting dental 

work. 

1.2 Developments in dental engineering  

 

Since the early 1990s, there have been many attempts at developing masticatory robots 

for the purposes of providing dental patient training, jaw simulation, food texture 

assessment and speech therapy. Some other jaw movement robots which can simulate 

human mandible movement and reproduce jaw force were applied in various sub-

disciplines. Alemzadeh et al. [4] developed a dental test simulator based on the Stewart 

platform, Bristol parallel robot, used for experiments on dental component materials by 

simulating human chewing. The research describes an artificial jaw and compliance of the 

Stewart platform [29], which has 6 degrees of freedom (DOF).  Its mechanism and the six 
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electric actuators, which are altered to match them more closely to the jaw’s dynamics by 

using inner-outer loop control and composite measurements, have very different dynamics 

by emulating the muscles responsible for the jaw movements. Basically, this is designed to 

simulate the wear of dental components (i.e., individual teeth, crowns or a full set of teeth). 

Callegari et al. [5] proposed a 3-PUU (prismatic/universal/universal) parallel mechanism 

used to perform dental disease pathology research in jaw motion. The design of a 

mechatronic articulator was intended to be used as a diagnostic and therapeutic instrument 

for the study of chewing disorders. However, the design is only limited with its computer 

design architecture and VR simulation.   In 1986 the Takanishi laboratory had developed a 

mastication robot called WY (Waseda Yamanashi) for patients’ mouth opening training. 

Compared to conventional mouth opening devices used in clinical practice such as bite 

blocks, and wooden screws, which are limited to open the mouth vertically without any 

sensors, actuators, and control systems, the 6-DOF robot can assist dentists with the 

quantitative force data to open a patient’s mouth with sensors, mechanical actuation, and 

control systems. Takanishi had developed a 6-DOF parallel robot based on his previous 

systems, WY-3RIII [10], which had fewer degrees of freedom, with the considerations of 

pathological and abnormal movements of the human jaw. There were many improvements 

in this project, such as it has more degrees of freedom, patients feel safe while it is under 

patients’ control with a safety button, the additional sensors prevent the mandible from 

tightly gripping the mouth opening gage, the electrical stopper with fuses protects patients 

from excessive mouth openings, and the feedback system reduces the error as small as 

possible, etc. [6]-[9].  This team also developed a mastication robot for the purpose of 

measuring the efficiency of mastication and its quantification experimentally, which is a 
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mechanical simulator based on human mastication anatomy. The robot has four 

subsystems: 1. A human skull-shaped frame; 2. The actuator system has nine artificial 

muscle actuators mimicking human mastication muscles; 3. Sensors are force sensors for 

each actuator and micro pressure sensors for molars; 4. The closed-loop control with sensor 

feedback. The advancement of the robotic system is that not only can the efficiency of the 

mastication be measured and quantified but the shape of artificial teeth can be altered to be 

suitable for biting motions in various trajectories of the mandible in regard to mastication 

efficiency [10]. There are other robotic models of the mastication systems developed for 

food industries’ testing purposes [11]-[14]. Xu et al. made a mastication robot based on the 

mastication robot WY’s design and improved it by changing the platform like mandible 

being a moving plate and the skull a ground plate. Thus its measurement of chewing 

efficiency was closer to the human jaw [14]. Those robots discussed above can simulate 

human jaw movement though, they are not developed for duplicating individual patients 

jaw positions and movements. 

1.3 Virtual Articulator 

 

Since the first digital image was obtained of the bite registry, of the global dental arch, 

and of the surfaces of each tooth, Kordass and Gartner described the programming and 

adjustment methods of the virtual articulator in 1999 [21]. Using a 3D laser scanner and a 

digital camera, the processed data were ready to use by the scanner software and for on-

screen visualization and digitalized manipulation [22]. Complete with an ultrasound 

system and optoelectronic device, this yielded  room for detecting and recording 

mandibular movements [22]-[23]. Therefore, current technology allows to navigate and 

view the world in 3D, and dentistry is no different. Using computer-aided design (CAD) 
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systems and reverse engineering tools enables analysis of the kinematics of jaw movements 

in virtual reality (VR). Not only can the virtual articulator significantly reduce the 

limitations of the mechanical articulator, but it allows dentists to analyze static and 

dynamic occlusions as well as jaw relationships [18]. The virtual articulator, which is 

completely adjustable and mathematically simulated, is capable of simulating jaw 

movements, by enabling correction of the VR occlusal surface and moving VR occlusal 

surfaces of teeth against each other to yield smooth and collision-free movements [19],[20].  

 

1.4 Summary and Drawbacks 

 

Presently, much of technical dental work uses the wax-up technique to construct the 

framework, and then the design work finishes with hand applied ceramic veneer, using a 

mechanical articulator that attempts to duplicate the jaw movements and  interarch jaw 

relationships [25]; other ceramic frameworks are largely done with CAD/CAM. Even 

though the virtual articulator is popular in routine practice to diagnose and simulate the 

functional effects upon dental occlusion, this mechanical scenario is different from real 

biological settings and causes serious problems. The technical procedure greatly reduces 

the accuracy of reproduction such as measuring facial dimensions and accounting for 

muscular influence due to patient anxiety. Mounted models cannot represent the actual 

dynamic conditions of the occlusion in the mouth; approximation of passive movements 

leads to misdiagnosis [19]. Moreover, those robots which simulate jaw movements are 

developed for other purposes as mentioned above. None of them can be used in clinical 

practice for reproducing the position and movements of the jaw, because of the complexity 

and variety of every individual patient’s jaw movement patterns.  In addition, the virtual 
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articulator upgrades the level of accuracy and creates high-quality communication between 

the dentist and dental technician, though it is limited to the digital world. Since the human 

oral cavity is a very sensitive environment (even a tiny hair in the mouth can cause 

discomfort), the basic errors, the reproduction of dynamics, excursive contacts of physical 

models and dental work seem to lower the reliability. Therefore, the usefulness of the 

virtual articulator on dental prosthetics still needs to be explored. 
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Chapter 2: Notion of the Idea 
 

As A. Gysi, the genius and pioneer of modern prosthetic dentistry, emphasized in 1907, 

the problem of articulation could only be solved when dentistry succeeded to record and 

reproduce jaw movements of individual patients [3]. However, the use of a passive 

mechanical device to replicate active jaw motions is inherently limited and leads to a trial-

and-error approach to fitting and adjusting dental work. An alternative to the existing trial-

and-error workflow would involve the digital capture of actual patient-specific jaw motion, 

and replication of that motion using a robotic articulator.  In this way, one could be sure 

that the motion of the articulator accurately represents the working conditions that would 

be experienced by dental prostheses, to within the combined accuracy of the motion 

capture, the kinematics of the robot, and the fidelity of the dental model in which the 

prosthesis is tested. Scaling of the captured motions would also allow for compensation of 

dimensional stability issues commonly encountered when working with models. This 

workflow is represented in Figure 2.1. 
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Figure 2. 1 Robotic Dental Articulator Concept 

The work presented here is an attempt to solve the problem by tracking individual 

patients’ jaw movements with a tracking system (details on motion tracking are outside the 

scope of this thesis) and copying these to the articulator with a parallel robot structure, 

which moves like a human mandible and on which the patient’s casts can be attached. This 

can not only solve the traditional problem in dentistry but also has the following benefits: 

• Increase accuracy. Since patients tend to be anxious about interventions in the 

maxillofacial area, this greatly affects the process of measurement and decreases the 

accuracy due to abnormal jaw movements. The new device would record jaw 

movement naturally during the conversation and relaxed interactions with the patient. 

• Provide precise repetition of movements and position. Once an individual patient’s jaw 

movements are recorded, dentists can repeat the patient’s protrusive and lateral 

movements as well as a centric relation (CR) on the dental model many times, even 
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introducing realistic motion perturbations if desired, without considering fatigue of the 

jaw, which would otherwise decrease the accuracy. This is a significant advancement 

in clinical practice. 

• Record and compare pre- and post-intervention mandible movements. Since the robot 

can be programmed and controlled easily with the data before or after a patient’s visit, 

it can significantly shorten the dentist chair-side time and also contribute to the 

accuracy of dental work. 

• Analyze static and dynamic occlusions as well as gnathic and joint conditions.  

• Possible to introduce and/or modify new settings according to the patient and assist 

with patient education. 

• Add a new dimension, a dynamic motion, to the study of anatomy, pathology, and 

methods of dentistry for treatment and education purposes. 

In this project, a parallel robot is presented to serve as an active dental articulator.  

Because the jaw moves in six degrees of freedom (DOF) but the ranges of motion in these 

DOF are highly dissimilar, the robot is optimized for kinematic performance specifically 

within the typical range of motion used in dental articulation.  This results in an asymmetric 

robot configuration (although the topology of each leg is the same, the dimensions are 

different) as described in more detail in the following chapters. 
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 Chapter 3: Approach  
 

Defining the characteristics of the human jaw and its movement is the first step for 

modeling the parallel robot, and then based on the jaw’s workspace the robot is optimized.  

3.1. Workspace and Movements of the Human Mandible 

 

The jaw is often modeled as a simple hinge; an example is the robot WY-1, which has 

1-DOF [6]. Although the primary open/close motion of the jaw is similar to a simple hinge, 

the relative motion between the upper and lower jaws is more complex and has components 

in all six DOF. 

3.1.1 Functional Anatomy of Masticatory System 

 

“Nothing is more fundamental to treating patients than knowing the Anatomy,” as 

Jeffrey P. Okeson said to highlight the importance of the functional anatomy of the 

mastication system [15]. The following anatomic components make up the basic functional 

structure of the mastication system.  

1. Human dentition and its supportive structures. The dentition of an adult is made up 

of 32 permanent teeth, and the supportive structures include gingiva, periodontal ligament, 

cementum, and alveolar bone.  

2. Skeletal components are the maxilla (developmentally two maxilla bones are fused 

at the midpalatal suture), the mandible, a U-shaped bone, and the temporal bone, which has 

important anatomical structures such as mandibular fossa, articular eminence etc.  

3. The temporomandibular joint (TMJ), which is a core part of all jaw movements and 

one of the most complex joints in human body. The main components of TMJ are the joint 
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capsule, mandibular condyles, articular disc, the temporal bone’s articular surface, 

stylomandibular ligament, sphenomandibular ligament, temporomandibular ligament, 

and lateral pterygoid muscle.  

4. The ligaments. Ligaments act as passive restraining devices to limit and restrict 

border movements in order to protect other structures; they do not enter actively into joint 

function though. There are three functional ligaments supporting the TMJ (collateral 

ligaments, the capsule ligaments, and the TMJ ligaments) as well as two accessory 

ligaments.  

5. The muscles of mastication. The main functions of skeletal muscles are support and 

movement. The muscles of mastication move the jaw and hold its position.  There are four 

pairs of mastication muscles: the masseter, the temporalis, the medial pterygoid, and the 

lateral pterygoid. The digastric muscles also play a significant role in moving the mandible 

as well as other functions, even though they are not considered as muscles of mastication 

[15]. 

 

3.1.2 Border and Functional Movements of Human Mandible 

 

Jaw movements occur as a complex series of interrelated 3D rotational and translational 

actions. While four groups of muscles drive the jaw to perform complex movements, 

special anatomical and physiological features of the TMJ determine the trajectory of the 

movements relative to the maxilla.   Basically, the TMJ regulates and constrains a complex 

series of interrelated rotational and translational jaw movements. Since there are two TMJ 

joints, bilateral synovial articulation between temporal bone and mandible, connected 
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through the jawbone, the movements are combinations of simultaneous activities of both. 

Rotational movements occur on axes in the horizontal, frontal and sagittal reference planes 

within the condyles, and translational movements occur between the superior surface of 

the articular disc and the inferior surface of the articular fossa, resulting in very complicated 

movements, such as depression, elevation, lateral deviation, protrusion and retrusion as 

illustrated in Fig. 3.1. 
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Figure 3. 1 Movement of Mandible 

3.1.2.1 Sagittal Plane Border and Functional Movements 

 

Basically, there are four distinct movements when mandible motion is viewed in the 

sagittal plane: posterior opening border, anterior opening border, superior contact border, 

and functional movements as seen in Fig. 3.2. (1) Posterior opening border movements 
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occur when the mandible rotates about the horizontal axis to a distance of 20-25 mm 

between the upper and lower incisal edges (first stage), then the condyles translate and the 

axis of rotation of the mandible shifts into the bodies of rami (second stage) and the 

condyles move anteriorly and inferiorly while the anterior portion of the mandible is 

moving posteriorly and inferiorly. The maximum range of opening is about 40-60 mm 

between incisal edges. (2) Anterior opening border movements. In these movements, the 

eccentricity is produced by the posterior movements of the condyles from the maximally 

open position of the mandible where the condyles are at the most anterior position. (3) 

Superior contact border movements are determined by the characteristics of the occlusion 

surfaces of the teeth. (4) Functional movements usually take place within the border 

movements during the functional activity of mandible. 

 

Figure 3. 2 Border and Functional Movements in Sagittal Plane 
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3.1.2.2 Horizontal Plane Border and Functional Movements 

 

Viewing in the horizontal plane, four distinct movements that form a rhomboid pattern 

can be seen as in Fig. 3.3. The four movements are left lateral, right lateral, continued left 

lateral border with protrusion, and continued right lateral border with protrusion 

movements. The movements occur when the mandible is rotating around one condyle and 

the other condyle is orbiting a vertical axis through the first condyle simultaneously while 

the mandible midline is being moved back to coincide with the midline of the face by 

anterior and opposite movement of the rotational condyle.     

 

Figure 3. 3 Border and Functional Movements in Horizontal Plane 
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3.1.2.3 Frontal Border and Functional Movements 

 

A shield-shaped pattern can be seen when viewed in the frontal (vertical) plane. The 

mandibular motion has four distinct movement components: left lateral superior border, 

left lateral opening border, right lateral superior border and right lateral opening border. 

Those movements occur when the condyles move in a lateral convex path with inferior 

movements of one or two condyles simultaneously as illustrated in Fig. 3.4. 

 

Figure 3. 4 Border and Functional Movements in Frontal Plane 

By combining those three plane mandibular movements, a 3D envelope of motion or 

mandibular workspace can be created as in Fig. 3.5 
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Figure 3. 5 Envelope or Workspace of the Mandible in 3 Dimensional Space 

Therefore, the arbitrary combinations of two condyles’ lateral, anterior or posterior, 

and superior or inferior movements create the border of mandible three-dimensional 

movements which is the ultimate purpose of our design. Accounting for the interference of 

dentitions with these movements as well as other non-natural movements, we consider the 

movement of the jaw as a 6-DOF system [15].  

This is recognized in the multi-jointed structure of passive articulators [2]. Therefore, 

a robotic dental articulator should allow small translation motions in all three directions as 
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well as small rotations about both axes normal to the main “hinge,” in addition to the 

obvious gross motion.  The design requirements must be set based on the trajectory of the 

mandible in its border movements or workspace.  

3.2. 6-RSS Architecture for Dental articulator 

 

The chosen architecture is a 6-RSS parallel robot, as shown in Figure 3.6. This leg type 

is chosen mainly because small, inexpensive servomotors are readily available to serve as 

the actuators. An obvious alternative would be the 6-SPS (Stewart platform) architecture, 

but it is desirable to avoid linear actuators, as they tend to be difficult to miniaturize to the 

size scale needed for a dental articulator.  

 

Figure 3. 6 6-RSS Architecture for Dental Articulator 

The 6-RSS parallel robot, as its name implies, has six legs connecting fixed and moving 

platforms, each leg having a revolute and two spherical joints to connect the leg segments 

l1i and l2i.  It consists of six revolute joints at points Ai on the fixed base (where subscript i 

represents the ith leg, from 1 to 6), six spherical joints at Bi between first links l1i and second 

links l2i, and six spherical joints at Ci, which connect second links l2i and the end effector. 

The base is fixed and considered static and the end effector moves in the workspace based 
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on the robot’s kinematics.  The revolute joint rotates about its axis and has one degree of 

freedom. The spherical joint rotates in pitch, yaw and roll through the center of its sphere, 

and has three degrees of freedom. Based on the Chebyshev-Grübler-Kutzbach [27] 

criterion for mechanism mobility, the formula is given, in this case, by 

F= λ (n – j–1) + ∑i  fi – fp               (1) 

in which  

F=degrees of freedom of the robot 

λ = degree of freedom in the space (i.e., 6 for spatial motion, 3 for planar motion) 

n = the number of links in the manipulator including the base 

j = the number of binary joints of the mechanism 

fi =degree of relative motion permitted by joint i 

fp = the total number of passive degree of freedom 

Thus, we can have λ = 6 for the motion space of the robot, and the number of links 

including the base is n = 6+6+2=14. There are six binary revolute joints at Ai (j1 = 6), and 

also 6×2 = 12 spherical joints at Bi and Ci ( j3 = 12). Moreover, for each RSS kinematic 

structure there is one passive degree of freedom (rotation of the link between each pair of 

spherical joints about its long axis, not contributing to overall robot motion), and therefore, 

fp =6. Then, applying the Chebyshev-Grübler-Kutzbach criterion, the degree of freedom of 

this robot can be calculated as follows: 

F = 6(14 – 18 – 1) + (12 ×3 +6) – 6 = 6              (2) 
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This parallel robot produces a complete spatial movement with three degrees of 

freedom for position and three degrees of freedom for orientation. There is no actuator 

redundancy in this case, since the number of actuators is also equal to the degrees-of-

freedom of the robot [27]. 

 

Figure 3. 7 Vector-Loop Closures 

The fixed platform is designed as a hexagon shape, called the base, while the moving 

platform is called the end effector. These two bodies are coupled by six legs with the upper 

and lower segments l1i and l2i attached by spherical joints at Bi, and each leg connected to 

the end effector at Ci with spherical joints and to the fixed platform at Ai with revolute 

joints. As shown in Fig. 3.7, the pose of the moving platform relative to the base is defined 

by a position vector D. In this figure, the closure of each kinematic loop can be expressed 

in the vector form as 
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  𝑂𝐷⃑⃑⃑⃑⃑⃑  = 𝑂𝐴⃑⃑⃑⃑  ⃑  + 𝐴𝐵⃑⃑⃑⃑  ⃑  + 𝐵𝐶⃑⃑⃑⃑  ⃑ + 𝐶𝐷⃑⃑⃑⃑  ⃑         (3) 

in which interchangeable notations OD =𝑂𝐷⃑⃑⃑⃑⃑⃑ , OA = 𝑂𝐴⃑⃑⃑⃑  ⃑ , OB = 𝑂𝐴⃑⃑⃑⃑  ⃑  + 𝐴𝐵⃑⃑⃑⃑  ⃑ , OC = 𝑂𝐴⃑⃑⃑⃑  ⃑  + 𝐴𝐵⃑⃑⃑⃑  ⃑ 

+ 𝐵𝐶⃑⃑⃑⃑  ⃑ are used in the equations in the following chapters. 

3.3. Inverse Kinematics 

 

The pose of the end effector is expressed as a position vector OD = [xD yD zD]T   and a 

set of Euler angles [ϕ  ]T . For inverse kinematic analysis, the pose of the end effector is 

given and the problem is to find the joint variables of the manipulator, θ = [θ1, θ2, θ3, θ4, 

θ5, θ6] 
T.  For a given pose of the end effector, the inverse kinematics of each “generic” leg 

can be solved separately. Denoting the center point of the revolute joint of the leg as OA, 

its connection to the first spherical joint as OB, and its connection to the second spherical 

joint as OC, all of these referenced to the global reference frame O located at the center of 

the fixed platform, and the local end-effector reference frame P with its location denoted 

as D, the position solution of the leg in Fig. 3.8 is as follows. From the geometry of the 

manipulator, the point OC is expressed in the global reference frame as  

OC = OD + Rx,ϕ Rz, Ry, 
PC    (4) 

where Rs are standard rotation matrices and P denotes the local reference frame of the 

end effector. Then,   

𝑪𝑂 = 𝑫𝑂   + [

𝑐𝑐𝜓 −𝑠𝜓 𝑠𝑐𝜓
𝑐𝜙𝑐𝑠𝜓 + 𝑠𝜙𝑠 𝑐𝜙𝑐𝜓 𝑐𝜙𝑠𝑠𝜓 − 𝑠𝜙𝑐
𝑠𝜙𝑐𝑠𝜓 − 𝑐𝜙𝑠 𝑠𝜙𝑐𝜓 𝑠𝜙𝑠𝑠𝜓 + 𝑐𝜙𝑐

] 𝑪𝑃    (5) 

where PC = [𝑟2𝑐𝛽 𝑟2𝑠𝛽 0]T, and 𝑟2 and 𝛽 define the location of C in frame P.  
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Figure 3. 8 The End Effector of the Robot 

  This yields OC as follows. 

𝑪𝑂 = {
𝑃
𝑄
𝑆
} = [

𝑥𝐷 − 𝑟2𝑠𝛽𝑠𝜓 + 𝑟2𝑐𝛽𝑐𝑐𝜓
𝑦𝐷 + 𝑟2𝑐𝛽(𝑠𝜙𝑠 + 𝑐𝜙𝑐𝑠𝜓) − 𝑟2𝑐𝜙𝑐𝜓𝑠𝛽

𝑧𝐷 − 𝑟2𝑐𝛽(𝑐𝜙𝑠− 𝑐𝑠𝜙𝑠𝜓) + 𝑟2𝑐𝜓𝑠𝛽𝑠𝜙
]   (6) 

The position of OB can be found by using Denavit-Hartenberg parameterization with 

the notations in Fig. 3.9, with θ as the variable. 

 

Figure 3. 9 Base Frame 
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𝑩𝑂 = 𝑻𝑂 [0 0 𝑙1 1]
𝑇  = [

𝑐𝑎 −𝑠𝑎𝑐𝜃 𝑠𝑎𝑠𝜃 𝑟1𝑐𝛼
𝑠𝑎 𝑐𝑎𝑐𝜃 −𝑐𝑎𝑠𝜃 𝑟1𝑠𝛼
0 𝑠𝜃 𝑐𝜃  0
0 0 0 1

] [0 0 𝑙1 1]
𝑇   (7) 

Then, 

𝑩𝑂 = {
𝐾
𝑀
𝑁

} = [

𝑙1𝑠𝛼𝑠𝜃 + 𝑟1𝑐𝛼
−𝑙1𝑐𝛼𝑠𝜃 + 𝑟1𝑠𝛼

𝑙1𝑐𝜃
]    (8) 

where 𝑟1 and 𝛼 define the location of A in frame O, and 𝑙1 is the length of the lower leg. 

Since 𝑙2 is the upper leg length between points C and B, we can derive an equation for θ, 

in terms of the parameters above, as follows: 

𝑙2 = (∥ 𝐂𝑂 − 𝐁𝑂 ∥) = [(𝑃 − 𝐾)2 + (𝑄 − 𝑀)2 + (𝑆 − 𝑁)2]1/2 

(9) 

Defining 

𝐻 = 𝑃2 + 𝑄2 + 𝑆2 + 𝑟1
2 + 𝑙1

2 − 𝑙2
2 − 2𝑃𝑟1𝑐𝛼 − 2𝑄𝑟1𝑠𝑎 

ℎ1 = 𝑙1𝑄𝑐𝑎 − 𝑙1𝑃𝑠𝛼 

ℎ2 = 𝑙1𝑆 

 (10) 

Then,  

2ℎ1𝑠𝜃 − 2ℎ2𝑐𝜃 + 𝐻 = 0     (11) 
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This is the generic equation for solving the input angle, θ, of each leg. Once the position 

vector of the end effector is given, the desired input angle θ can be solved numerically in 

MATLAB. 
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Chapter 4: Design and Optimization 
 

As discussed above, since the functional movements of the human jaw are limited by 

ligaments and the articular surface of the TMJ as well as dentition, the outer range of 

motion within reproducible limits results in the border movements in three-dimensional 

space. Plus, a robot designed for general use may not have adequate kinematic performance 

or precision of manufacture to provide precise pose control in this  asymmetric workspace. 

Therefore, a dimensional optimization is pursued to arrive at a robot suitable for this 

specific task. 

We optimize the design by adjusting the structural parameters, the lengths of each 

individual link, based on the other fixed parameters such as the radii, size and shape of 

fixed and moving platforms, and the distance between platform centers.  The platforms are 

six-sided polygons, hexagons with different radii. Given parameters are shown in Table 

4.1. 

Table 4. 1 Design Variables and Parameters 

Number of legs (i) 
1 2 3 4 5 6 

ai −
𝜋

6
 

𝜋

6
 

𝜋

2
 

5𝜋

6
 

7𝜋

6
 

3𝜋

2
 

βi −
𝜋

6
 

𝜋

6
 

𝜋

2
 

5𝜋

6
 

7𝜋

6
 

3𝜋

2
 

r1i 94 mm 94mm 94mm 94mm 94mm 94mm 

r2i 47 mm 47 mm 47 mm 47 mm 47 mm 47 mm 

z1 25 mm 25 mm 25 mm 25 mm 25 mm 25 mm 

z2 10 mm 10 mm 10 mm 10 mm 10 mm 10 mm 
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Therefore, it is necessary to optimize the parameters l1i, l2i, where i = 1…6 based on 

the border movements of the jaw. Based on a symmetric robot (plane of symmetry 

equivalent to the sagittal plane passing through the center of the head), the data of the 

trajectory of the lower incisor point of the mandible measured by using a mandibular 

kinesiograph, the main parameters of the envelope of the lower incisor point are as follows 

[26]: 

The maximum mouth-opening movement Lmax = 42.6 mm  

The maximum protrusion Hmax = 12.2 mm 

The maximum lateral movement Wmax = 30.0 mm.  

Based on these functional requirements, we set a range of motion of +/-15mm in the x-

direction (symmetric based on Wmax), -12mm to +2 mm in the y-direction (based on 

protrusion of 12 mm and retrusion of 2 mm), maximum displacement of 60mm in the z-

direction (values for the range of motion vary based on the links values as illustraded in 

Fig 4.2), +/-17deg rotation about the z-axis, +/-11deg rotation about the y-axis, and 0 to 

31deg rotation about the x-axis.  This can be thought of as a 6-dimensional hypercube of 

workspace. 

 

 

 

 

Figure 4. 1 Workspace Assumption 

min (max (l1i, and  l2i)) 

 subject to spherical 

joints range < 92o 

workspace assumption 

(60mm,60mm for l1i, and  

l2i based on 60-120mm 

height)  
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The optimization problem is stated in Figure 4.1. Here, it is necessary to optimize initial 

values of l1i and l2i first. Based on physical limitations of hardware, there are some 

constraints in this design, such as the range of servos’ revolute angles between 25o-160o as 

well as the maximum range of spherical joint motion of 92o, as in Fig. 4.2. 

 

Figure 4. 2 the Maximum Range of Motion 

  

To avoid impractical joint angle values, the optimization limited the spherical joints to 

a range of 92 degrees total motion and the maximum motion angle of the end effector of 

31o. Moreover, the maximum height of opening, Lmax, equals the difference of L1 and L2  

as illustrated in Fig 4.3. 

L1-L2 ≥ 60 mm       (12) 

l1i + l2i – (l2i – l1i cos92o) ≥ 60 mm    (13) 
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Figure 4. 3 Initial Optimization of First and Second Leg 

We can derive an approximate value for l1i from the equation above, which is 60 mm 

and we assume l2i = 60 mm. Therefore, the range of motion along the z-axis will be 60 mm 

to 120 mm in the first iteration. Hence, accounting for the given initial values of l1i and  l2i, 

the set of points within the workspace where the robot is supposed to reach can be simulated 

by using the “ndgrid” function in Matlab as “[x,y,z]=ndgrid(-15:3:15,-2:3:12,60:6:120) .”   

Defining initial values (l1i = 60mm and l2i = 60mm) for the optimization, we derive 

values of angles for each leg respectively by the inverse kinematics with the data of the 

vectors that we produced as grid vectors, solving the inverse kinematics by using the fzero 

function in Matlab based on the equations derived in the previous chapter. Then, using the 

angles and the corresponding vector points, the values of the vector ||AC|| can be obtained. 
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Based on the ||AC|| values, we optimize for new values for the links of every single leg 

respectively by using equations (14) and (15). 

l1i = (||AC||max - ||AC||min)      (14) 

l2i = ||AC||max - l1i          (15) 

 Then, using average values of new and old l1i and l2i,  this process is iterated until l1i 

and  l2i values converge. The flowchart of the process is illustrated in Fig. 4.4. 
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Figure 4. 4 Flowchart of the Optimization Process 

After 8 iterations of this process, the values of l1i and l2i have converged to the values 

given in Table 4.2. 
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Table 4. 2 Iterations and l1i and l2i Values (mm) 

iterations l11 l12 l13 l21 l22 l23 

initial 60 60 60 60 60 60 

2 91.5271 86.0047 80.3709 72.8352 54.5726 56.9260 

3 91.1801 86.3433 82.1293 70.1212 59.3213 47.0838 

4 91.1801 86.3433 82.1293 70.1212 59.3213 47.0838 

 

 Hence, the above flowcharts were implemented in MATLAB to find the leg length 

parameters which allow reaching all poses in the workspace hypercube while maintaining 

minimum robot size (as measured by the longest leg).  

The robot design resulting from the optimization process described above is shown in 

Fig. 4.5. The leg parameters are given Table 4.3. 

 

Figure 4. 5 CAD Model of Optimized Robot 
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Table 4. 3  Optimized Legs’ Length Parameters 

Leg l1i (mm) l2i (mm) 

1 91.1801 70.121 

2 86.3433 59.3213 

3 82.1293 47.0838 
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Chapter 5: Physical Design 
 

5.1 Mechanical Components 

 

The CAD model of the robot has been done with Autodesk Inventor. When it comes to 

making its physical model, there are a couple of challenging issues, including size and 

weight of the ball joints. Since commercially available ball joints are made of metal 

and the size is relatively large, this not only creates bigger inertia than desired but also 

may reduce range of motion. Therefore, it was decided to create a custom design. 

Spherical beads were connected with metal rods using glue to achieve the targeted leg 

lengths as illustrated in Fig. 5.1.  

  

Figure 5. 1 Second Link of The Leg (l2i) 

Other parts of the robot are printed as designed in CAD and are shown in Fig. 5.2 and 

Fig. 5.3. 
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Figure 5. 2 CAD Designs of Parts 
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Figure 5. 3 3D Printed Mechanical Parts 

5.2 Electronic Components 

 

Electronic components include HS-5065MG high torque servo motors, a 

microcontroller (Arduino UNO), Adafruit motor shield as well as a Rayovac AC adaptor 

for power supply, a breadboard and jumper wires as shown in Fig 5.4. 
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Figure 5. 4 Electronic Components 

We chose the servomotor as an actuator for several reasons. First of all, a 

servomotor allows for precise control of position, velocity and acceleration [28], because 

it has integrated closed-loop feedback control. Secondly, this servo has high torque and 

high speed (2.2 kg.cm of torque and a fast transit time of 0.11 second at 6 volts). Since the 

whole robot, legs and the end effector, is very light (about 20g), the inertia the robot created 

can be negligible compared to the high torque of the robot. Finally, the size of the servo is 

small (23.6x11.6x24mm), which fits our design objective.  
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5.3 The Prototype of the Robot 

 

The prototype of the robot is assembled as its CAD model and with its electronic 

components mounted. It is size, and appearance is illustrated in Fig. 5.5 from various views. 

 

Figure 5. 5 The Prototype of the Robot 

The comparison of the robot (270mm x174mm x275mm) with a Denar semi-adjustable 

articulator (153mm x150mm x140mm), one of the most popular articulators in dentistry, 

is illustrated in Fig. 5.6  
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Figure 5. 6 Comparison of the Robot and Denar Articulator 
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5.4 Manufacturing and Prototype Testing  

Based on the optimized designs and physical and electronic parts in the previous 

chapters, the robot is assembled for the testing purpose in this chapter. Since cameras for 

robot localization are not available, we are not able to validate the accuracy of the motion 

or position; with the known manufacturing errors of the prototype, its main purpose is to 

prove out the concept. In this project, the kinematics within the typical range of motion 

(opening mouth movement) is tested based on inverse kinematics we derived.  

Assembling the prototype with dimensions as optimized revealed that one of the 

assumptions of the optimization needs improvement. The link lengths were minimized 

based on reaching a given vertical travel distance, under constraints of spherical joint range 

of motion. It was assumed that all the vertical travel from rotation of l1 produced vertical 

translation of l2; however, because of the size mismatch between the fixed and moving 

platforms, some of length of l2 is devoted to spanning the horizontal distance between the 

respective attachment points. Therefore, the lengths l2 should have a scaling factor greater 

than 1 applied in order to maintain the optimal workspace characteristics. 

To compensate for this in the prototype, a smaller fixed platform was fabricated to 

allow greater range of motion as in Fig. 5.7 with the size 270mm x174mm x275mm, which 

is closer to the Denar articulator mentioned above. The tradeoff of this is that having fixed 

and moving platforms of similar size causes the kinematic solution to be poorly 

conditioned, such that the robot motion is not accurate. In the long run, the solution is to 

retain the different sizes of fixed and moving platform but built longer links l2. 
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  Figure 5. 7 The Improved Robot 

A simple open-close motion of the mouth is tested on the robot. The mouth opening of 

30 mm and with a 20o angle as illustrated in Fig 5.8 is given to derive the rotational angles 

in respect to every servo. So, repeating of the motion is coded and the robot acts 

qualitatively as expected as shown in Fig 5.9. 
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Figure 5. 8The Open-Close Motion 

 

Figure 5. 9 The Test of The Motion 
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As a result, the servos move accurately with the input angles through command from 

the Arduino, which is the essential part of the prototype since the kinematics is correct and 

the optimization has improved the design. However, manufacturing still needs to be 

improved and the validation of accuracy would be next step with an improved prototype. 
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Chapter 6: Conclusions and Future Work 
 

6.1 Conclusions 

 

This thesis presents the design, kinematics, optimization and the prototype of the 

parallel robot for dental articulation. The preliminary design of the robot integrated with 

its electronic components is tested its movements within its workspace by implementing 

basic Arduino code successfully.  

The objective of this project is to introduce a parallel robot into dental practice. Since 

the traditional articulator is inherently limited when producing patient-specific dental 

molds, it is necessary and doable to make an articulator with current technology, which can 

reduce the trial-error approach to fitting dental work. The dental robot we designed for 

dental articulation not only addresses the traditional problem in dentistry, but also takes 

into consideration the technical difficulty of duplicating the positions and motions of an 

individual patient’s jaw in dental clinic. Thus, this is expected to reduce the dentist’s 

chairside time and improve the efficacy of dental workflow. Most importantly, it introduces 

the new dimension of dynamic motion to the study of dental anatomy, pathology, and 

dental methods for education and treatment purposes and is a step towards enabling dentists 

to record and compare the pre- and post-intervention mandible movements as well as 

analyze static and dynamic occlusions through certain periods of time. 

6.2 Future Work: 

 

Future work of the project includes integrating the tracking system which tracks and 

records the patient’s jaw position and movements with the parallel robot after validating 

computer codes which run the robot. Then, clinical testing will be performed to validate it 
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through dental practice. Once the validation is done, we will upgrade it with pressure 

sensors on the end effector and/or the legs. Calculating and analyzing the data collected 

through the sensors, the dentist is enabled to map out biting forces for every single position 

of occlusal surfaces and cusps. This will be another significant improvement in dentistry 

since it is recorded naturally. If it is successfully applied as expected, it has more 

advantages that the current device, T-Scan, which maps out biting forces by biting a pad. 
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Appendix 
 

Appendix A 

 

Matlab codes for optimization 

A-1 Creating 6D hypercube vectors within the workspace 
clear all;clc; 

 

  
 %% 
% [x,y,z,c,d,e]=ndgrid(-15:5:15,-2:4:12,60:5:120,-31*pi/180:.2:0,... 
% -11*pi/180:.15:11*pi/180,-17*pi/180:.3:17*pi/180)% first iteration 
%  
% [x,y,z,c,d,e]=ndgrid(-15:5:15,-2:4:12,80:6:140,-31*pi/180:.2:0,... 
% -11*pi/180:.15:11*pi/180,-17*pi/180:.3:17*pi/180)% 2nd iteration 
%  
% [x,y,z,c,d,e]=ndgrid(-15:5:15,-2:4:12,100:6:160,-31*pi/180:.2:0,... 
% -11*pi/180:.15:11*pi/180,-17*pi/180:.3:17*pi/180)% 3rd iteration 
%  
% [x,y,z,c,d,e]=ndgrid(-15:5:15,-2:4:12,118:6:178,-31*pi/180:.2:0,... 
% -11*pi/180:.15:11*pi/180,-17*pi/180:.3:17*pi/180)% 4th iteration 
%  
% [x,y,z,c,d,e]=ndgrid(-15:5:15,-2:4:12,110:5:170,-31*pi/180:.2:0,... 
% -11*pi/180:.15:11*pi/180,-17*pi/180:.3:17*pi/180)% 5th iteration 
%  
% [x,y,z,c,d,e]=ndgrid(-15:5:15,-2:4:12,120:5:180,-31*pi/180:.2:0,... 
% -11*pi/180:.15:11*pi/180,-17*pi/180:.3:17*pi/180)% 6th iteration 
%  
% [x,y,z,c,d,e]=ndgrid(-15:5:15,-2:4:12,120:5:180,-31*pi/180:.2:0,... 
% -11*pi/180:.15:11*pi/180,-17*pi/180:.3:17*pi/180)% 7th iteration 

  
% [x,y,z,c,d,e]=ndgrid(-15:5:15,-2:4:12,120:5:180,-31*pi/180:.2:0,... 
% -11*pi/180:.15:11*pi/180,-17*pi/180:.3:17*pi/180)% 8th iteration 

 

A-2 Calculating P, Q, S, H, h1, and h2 values corresponding to the vectors we 

derived for each leg.  
syms a b  theta  r1 r2 z0 z01 z1 z2 l1 l2  
z0=0;z01=0;z1=0;z2=0; 
 r1=84;r2=47; 

  
% %  Initial iteration 
% l1=60;l2=60; 
% a=5*pi/3; b=5*pi/3; % leg1 
% a=0; b=0; % leg2  
% a=pi/3; b=pi/3; % leg3  
% a=2*pi/3; b=2*pi/3; %leg4  
% a=pi; b=pi; %leg5 
% a=4*pi/3; b=4*pi/3; %leg6 
%% 2nd iteration 
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% a=5*pi/3; b=5*pi/3;  l1=62.5 ;l2=80; % leg1 
% a=0; b=0;  l1=60.4;l2=70; % leg2  
% a=pi/3; b=pi/3; l1=58;l2=70;% leg3  
% a=2*pi/3; b=2*pi/3;l1=58;l2=70; %leg4  
% a=pi; b=pi; l1=60.4;l2=70;%leg5 
% a=4*pi/3; b=4*pi/3;l1=62.5;l2=80; %leg6 

  
%% 3rd iteration 
% l1 = 63 60.5 68.5; 
% l2= 98 87 79; 
% a=5*pi/3; b=5*pi/3;  l1=63 ;l2=98; % leg1 
% a=0; b=0;  l1=60.5;l2=87; % leg2  
% a=pi/3; b=pi/3; l1=68.5; l2=79;% leg3  
% a=2*pi/3; b=2*pi/3;l1=66; l2=68; %leg4  
% a=pi; b=pi; l1=60.5;l2=87; %leg5 
% a=4*pi/3; b=4*pi/3; l1=63 ;l2=98; %leg6 
%% 4th iteration 
% l1 = 63.6 60.5 64; 
% l2= 116 105 93; 
% a=5*pi/3; b=5*pi/3;  l1=63.6 ;l2=116; % leg1 
% a=0; b=0;  l1=60.5;l2=105; % leg2  
% a=pi/3; b=pi/3; l1=64; l2=93;% leg3  
% a=2*pi/3; b=2*pi/3;l1=64; l2=93; %leg4  
% a=pi; b=pi; l1=60.5;l2=105; %leg5 
% a=4*pi/3; b=4*pi/3;l1=63.6 ;l2=116;%leg6 
%% 5th iteration 
% l1 = 64.2 60.7 60.4; 
% l2= 108 92 86.7; 
% a=5*pi/3; b=5*pi/3;  l1=64.2 ;l2=108; % leg1 
% a=0; b=0;  l1=60.7;l2=92; % leg2  
% a=pi/3; b=pi/3; l1=60.4; l2=86.7;% leg3  
% a=2*pi/3; b=2*pi/3; l1=60.4; l2=86.7; %leg4  
% a=pi; b=pi;l1=60.7;l2=92; %leg5 
% a=4*pi/3; b=4*pi/3; l1=64.2 ;l2=108; %leg6 
%% 6th iteration 
% l1 = 64.2 60.6 60.2; 
% l2= 126 112 101.6; 
% a=5*pi/3; b=5*pi/3;  l1=64.2 ;l2=126; % leg1 
% a=0; b=0;  l1=60.6;l2=112; % leg2  
% a=pi/3; b=pi/3; l1=60.2; l2=101.6;% leg3  
% a=2*pi/3; b=2*pi/3;  l1=60.2; l2=101.6; %leg4  
% a=pi; b=pi;l1=60.6;l2=112;  %leg5 
% a=4*pi/3; b=4*pi/3;l1=64.2 ;l2=126; %leg6 
%% 7th iteration 
% l1 = 64.1 60.5 60.3; 
% l2= 130.7 117 106.2; 
% a=5*pi/3; b=5*pi/3;  l1=64.1 ;l2=130.7; % leg1 
% a=0; b=0;  l1=60.5;l2=117; % leg2  
% a=pi/3; b=pi/3; l1=60.3; l2=106.2;% leg3  
% a=2*pi/3; b=2*pi/3;  l1=60.3; l2=106.2; %leg4  
% a=pi; b=pi;l1=60.5;l2=117; %leg5 
% a=4*pi/3; b=4*pi/3; l1=64.1 ;l2=130.7; %leg6 
%% 8th iteration 
% l1 = 64.1 60.4 60.2; 
% l2= 128.8 117 103.7; 
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% a=5*pi/3; b=5*pi/3;  l1=64.1 ;l2=128.8 ; % leg1 
% a=0; b=0;  l1=60.4;l2=117; % leg2  
% a=pi/3; b=pi/3; l1=60.2; l2=103.7;% leg3  
% a=2*pi/3; b=2*pi/3;  l1=60.2; l2=103.7; %leg4  
% a=pi; b=pi;l1=60.5;l2=117; %leg5 
% a=4*pi/3; b=4*pi/3; l1=64.1 ;l2=128.8; %leg6 
%%  
% R=[cos(d)*cos(e) -sin(e) sin(d)*cos(e); cos(c)*cos(d)*sin(e)+... 
% sin(c)*sin(d) cos(c)*cos(e) cos(c)*sin(d)*sin(e)-sin(c)*cos(d);... 
% sin(c)*cos(d)*sin(e)-cos(c)*sin(d) sin(c)*cos(e) ... 
% sin(c)*sin(d)*sin(e)+cos(c)*cos(d)]; 
% Cd=[r2*cos(b); r2*sin(b);z2]; 
% Do=[x;y;z]; 
% Co=Do+R*Cd; 
% Bo=[l1*sin(a)*sin(theta)+r1*cos(a); -

l1*cos(a)*sin(theta)+r1*sin(a);... 
% l1*cos(theta)+z1]; 

  
P=x - r2*sin(b).*sin(e) + z2*sin(d).*cos(e) + 

r2*cos(b).*cos(d).*cos(e); 
Q=y - z2*(cos(d).*sin(c) - cos(c).*sin(d).*sin(e)) + ... 
    r2*cos(b).*(sin(c).*sin(d) + cos(c).*cos(d).*sin(e)) +... 
    r2*cos(c).*cos(e).*sin(b); 
S= z + z2*(cos(c).*cos(d) + sin(c).*sin(d).*sin(e)) - ... 
    r2*cos(b).*(cos(c).*sin(d) - cos(d).*sin(c).*sin(e)) + ... 
    r2*cos(e).*sin(b).*sin(c); 
H=P.^2+Q.^2+S.^2+z01^2+r1^2+l1^2-l2^2-2*P.*r1*cos(a)- ... 
    2*Q.*r1*sin(a)-2*S.*z01; 
h1=l1*Q.*cos(a)-l1*P.*sin(a); 
h2=l1*(z01+S); 

 

A-3 The code for deriving theta values of each leg 

for  i1=1:size(H,1) 
   for  i2=1:size(H,2) 
       for  i3=1:size(H,3) 
           for  i4=1:size(H,4) 
               for  i5=1:size(H,5) 
                   for  i6=1:size(H,6) 
      h1temp = h1(i1,i2,i3,i4,i5,i6); 
      h2temp = h2(i1,i2,i3,i4,i5,i6); 
      Htemp = H(i1,i2,i3,i4,i5,i6); 
      xtemp=x(i1,i2,i3,i4,i5,i6) ; 
      ytemp = y(i1,i2,i3,i4,i5,i6) ;  
      ztemp=z(i1,i2,i3,i4,i5,i6); 
      ctemp=c(i1,i2,i3,i4,i5,i6) ;  
      dtemp=d(i1,i2,i3,i4,i5,i6) ; 
      etemp=e(i1,i2,i3,i4,i5,i6) ; 
      P=xtemp - r2*sin(b).*sin(etemp) + z2*sin(dtemp).*cos(etemp) + 

r2*cos(b).*cos(dtemp).*cos(etemp); 
      Q=ytemp - z2*(cos(dtemp).*sin(ctemp) - 

cos(ctemp).*sin(dtemp).*sin(etemp)) + 

r2*cos(b).*(sin(ctemp).*sin(dtemp) + 

cos(ctemp).*cos(dtemp).*sin(etemp)) + 

r2*cos(ctemp).*cos(etemp).*sin(b); 



53 
 

      S= ztemp + z2*(cos(ctemp).*cos(dtemp) + 

sin(ctemp).*sin(dtemp).*sin(etemp)) - 

r2*cos(b).*(cos(ctemp).*sin(dtemp) - 

cos(dtemp).*sin(ctemp).*sin(etemp)) + 

r2*cos(etemp).*sin(b).*sin(ctemp); 
      AC=((P-r1*cos(a))^2+(Q-r1*sin(a))^2+(S-z1)^2)^(1/2); 
      if AC>180 && AC<90 
          theta(i1,i2,i3,i4,i5,i6) = NAN; 
      else            

                   
      F = @(thetatemp,h1temp,h2temp,Htemp) 2*h1temp.*sin(thetatemp)-

2*h2temp.*cos(thetatemp)+Htemp;  
      thetatemp=pi/4; 
      theta6(i1,i2,i3,i4,i5,i6)=fzero(@(thetatemp) 

F(thetatemp,h1temp,h2temp,Htemp),0); 
      end 
                   end 
               end 
           end 
       end 
   end 
end 

 

A-4 code for finding the vector AC’s value and maximum and minimum values of 

AC for each leg. 
syms a b   r1 r2 z0 z01 z1 z2 l1 l2  
z0=0;z01=0;z1=0;z2=0; 
 r1=84;r2=47; 

 
%% initial iteration 
% l1=60;l2=60; 
% a=5*pi/3; b=279.21*pi/180; % leg1 
% a=0; b=20.79*pi/180; % leg2  
% a=pi/3; b=39.21*pi/180; % leg3  
% a=2*pi/3; b=140.69*pi/180; %leg4  
% a=pi; b=159.21*pi/180; %leg5 
% a=4*pi/3; b=260.79*pi/180; %leg6 
%% 2nd iteration 

  
% a=5*pi/3; b=5*pi/3;  l1=62.5 ;l2=80; % leg1 
% a=0; b=0;  l1=60.4;l2=70; % leg2  
% a=pi/3; b=pi/3; l1=58;l2=70;% leg3  
% a=2*pi/3; b=2*pi/3;l1=58;l2=70; %leg4  
% a=pi; b=pi; l1=60.4;l2=70;%leg5 
% a=4*pi/3; b=4*pi/3;l1=62.5;l2=80; %leg6 

  

  

  
%% 3rd iteration 
% l1 = 63 60.5 68.5; 
% l2= 98 87 79; 
% a=5*pi/3; b=5*pi/3;  l1=63 ;l2=98; % leg1 
% a=0; b=0;  l1=60.5;l2=87; % leg2  
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% a=pi/3; b=pi/3; l1=68.5; l2=79;% leg3  
% a=2*pi/3; b=2*pi/3;l1=66; l2=68; %leg4  
% a=pi; b=pi; l1=67;l2=80; %leg5 
% a=4*pi/3; b=4*pi/3;l1=69 ;l2=81; %leg6 
%% 4th iteration 
% l1 = 63.6 60.5 64; 
% l2= 116 105 93; 
% a=5*pi/3; b=5*pi/3;  l1=63.6 ;l2=116; % leg1 
% a=0; b=0;  l1=60.5;l2=105; % leg2  
% a=pi/3; b=pi/3; l1=64; l2=93;% leg3  
% a=2*pi/3; b=2*pi/3;l1=64; l2=93; %leg4  
% a=pi; b=pi; l1=60.5;l2=105; %leg5 
% a=4*pi/3; b=4*pi/3;l1=63.6 ;l2=116;%leg6 
%% 5th iteration 
% l1 = 64.2 60.7 60.4; 
% l2= 108 92 86.7; 
% a=5*pi/3; b=5*pi/3;  l1=64.2 ;l2=108; % leg1 
% a=0; b=0;  l1=60.7;l2=92; % leg2  
% a=pi/3; b=pi/3; l1=60.4; l2=86.7;% leg3  
% a=2*pi/3; b=2*pi/3; l1=60.4; l2=86.7; %leg4  
% a=pi; b=pi;l1=60.7;l2=92; %leg5 
% a=4*pi/3; b=4*pi/3; l1=64.2 ;l2=108; %leg6 
%% 6th iteration 
% l1 = 64.2 60.6 60.2; 
% l2= 126 112 101.6; 
% a=5*pi/3; b=5*pi/3;  l1=64.2 ;l2=126; % leg1 
% a=0; b=0;  l1=60.6;l2=112; % leg2  
% a=pi/3; b=pi/3; l1=60.2; l2=101.6;% leg3  
% a=2*pi/3; b=2*pi/3;  l1=60.2; l2=101.6; %leg4  
% a=pi; b=pi;l1=60.6;l2=112;  %leg5 
% a=4*pi/3; b=4*pi/3;l1=64.2 ;l2=126; %leg6 
%% 7th iteration 
% l1 = 64.1 60.5 60.3; 
% l2= 130.7 117 106.2; 
% a=5*pi/3; b=5*pi/3;  l1=64.1 ;l2=130.7; % leg1 
% a=0; b=0;  l1=60.5;l2=117; % leg2  
% a=pi/3; b=pi/3; l1=60.3; l2=106.2;% leg3  
% a=2*pi/3; b=2*pi/3;  l1=60.3; l2=106.2; %leg4  
% a=pi; b=pi;l1=60.5;l2=117; %leg5 
% a=4*pi/3; b=4*pi/3; l1=64.1 ;l2=130.7; %leg6 
%% 8th iteration 
% l1 = 64.1 60.4 60.2; 
% l2= 128.8 117 103.7; 
% a=5*pi/3; b=5*pi/3;  l1=64.1 ;l2=128.8 ; % leg1 
% a=0; b=0;  l1=60.4;l2=117; % leg2  
% a=pi/3; b=pi/3; l1=60.2; l2=103.7;% leg3  
% a=2*pi/3; b=2*pi/3;  l1=60.2; l2=103.7; %leg4  
% a=pi; b=pi;l1=60.5;l2=117; %leg5 
% a=4*pi/3; b=4*pi/3; l1=64.1 ;l2=128.8; %leg6 
for  i1=1:size(x,1) 
   for  i2=1:size(x,2) 
       for  i3=1:size(x,3) 
           for  i4=1:size(x,4) 
               for  i5=1:size(x,5) 
                   for  i6=1:size(x,6) 
      xtemp=x(i1,i2,i3,i4,i5,i6) ; 
      ytemp = y(i1,i2,i3,i4,i5,i6) ;  
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      ztemp=z(i1,i2,i3,i4,i5,i6); 
      ctemp=c(i1,i2,i3,i4,i5,i6) ;  
      dtemp=d(i1,i2,i3,i4,i5,i6) ; 
      etemp=e(i1,i2,i3,i4,i5,i6) ; 
      P(i1,i2,i3,i4,i5,i6)=xtemp - r2*sin(b).*sin(etemp) +... 
          z2*sin(dtemp).*cos(etemp) + 

r2*cos(b).*cos(dtemp).*cos(etemp);     
      Q(i1,i2,i3,i4,i5,i6)=ytemp - z2*(cos(dtemp).*sin(ctemp) - ... 
          cos(ctemp).*sin(dtemp).*sin(etemp)) + 

r2*cos(b).*(sin(ctemp).*... 
          sin(dtemp) + cos(ctemp).*cos(dtemp).*sin(etemp)) + ... 
          r2*cos(ctemp).*cos(etemp).*sin(b); 
      S(i1,i2,i3,i4,i5,i6)= ztemp + z2*(cos(ctemp).*cos(dtemp) +.... 
          sin(ctemp).*sin(dtemp).*sin(etemp)) - 

r2*cos(b).*(cos(ctemp).*... 
          sin(dtemp) - cos(dtemp).*sin(ctemp).*sin(etemp)) + ... 
          r2*cos(etemp).*sin(b).*sin(ctemp); 
      Ptemp=P(i1,i2,i3,i4,i5,i6); 
      Qtemp=Q(i1,i2,i3,i4,i5,i6); 
      Stemp=S(i1,i2,i3,i4,i5,i6); 
      AC(i1,i2,i3,i4,i5,i6)=((Ptemp-r1*cos(a))^2+(Qtemp-

r1*sin(a))^2+... 
          (Stemp-z1)^2)^(1/2); 

       
                   end 
               end 
           end 
       end 
   end 
end 

  

  
ACmx=max( reshape(AC,[(i1*i2*i3*i4*i5*i6),1]))% the maximumvae of AC 
ACmn=min( reshape(AC,[(i1*i2*i3*i4*i5*i6),1]))% the minimum value of AC 

 

A-5 Ultimate values for l1i and l2i  
% % 1st 
% ACmx = [ 164.3623 140.5773 137.2969];  
% ACmn =  [72.8352 54.5726 56.9260]; 
% result of 2nd iteration 
% % L1 =   64.7194   60.8145   56.8308; 
% % L2 =   99.6429   79.7628   80.4661; 
% l1 and l2 values for next iteration 
% l1 = 62.5 60.4 58; 
% l2= 80 70 70 
% % 2nd 
% ACmx = [179.7573  164.3276 147.9616];  
% ACmn =  [88.5726 78.2144 63.9522]; 
%  result of 1st iteration 
% L1 =   64.4773   60.8912   59.4036 
% L2 =   115.2800  103.4364   88.5580 
% l1 and l2 values for next iteration 
% l1 = 63 60.5 68.5; 
% l2= 98 87 79; 
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% % 3rd 
% ACmx = [ 198.5127 183.2728   167.0008];  
% ACmn =  [ 107.5790 97.5499  82.2368]; 
% result of 1st iteration 
% % L1 =  64.2998   60.6152   59.9372; 
% % L2 =   134.2129  122.6576  107.0636; 
% l1 and l2 values for next iteration 
% l1 = 63.6 60.5 64; 
% l2= 116 105 93; 

  
% % 4th 
% ACmx = [ 215.5839 200.4988 184.3101];  
% ACmn =  [124.9502 115.1460 99.2603]; 
% result of 1st iteration 
% % L1 =   64.7194   60.8145   56.8308; 
% % L2 =   99.6429   79.7628   80.4661; 
% l1 and l2 values for next iteration 
% l1 = 64.2 60.7 60.4; 
% l2= 108 92 86.7; 

  
% % 5st 
% ACmx = [  207.9774 192.8254 176.6000];  
% ACmn =  [117.2062 107.3090  91.6483]; 
% result of 1st iteration 
% % L1 =    64.1849   60.4692   60.0699; 
% % L2 =   143.7925  132.3562  116.5301; 
% l1 = 64.2 60.6 60.2; 
% l2= 126 112 101.6; 

  
% % 6st 
% ACmx = [ 217.4900 202.4211 186.2414];  
% ACmn =  [ 126.8912 117.1087 101.1727]; 
% result of 1st iteration 
% % L1 =  64.0630   60.3250   60.1527; 
% % L2 = 153.4270  142.0961  126.0887; 
% l1 and l2 values for next iteration 
% l1 = 64.1 60.5 60.3; 
% l2= 130.7 117 106.2; 

  
% % 7st 
% ACmx = [ 217.4900 202.4211 186.2414];  
% ACmn =  [ 126.8912 117.1087 101.1727]; 
% result of 1st iteration 
% % L1 =  64.0630   60.3250   60.1527; 
% % L2 = 153.4270  142.0961  126.0887; 
% l1 and l2 values for next iteration 
% l1 = 64.1 60.4 60.2; 
% l2= 128.8 117 103.7; 

  
% % 8st 
% ACmx = [ 217.4900 202.4211 186.2414];  
% ACmn =  [ 126.8912 117.1087 101.1727]; 
% result of 1st iteration 
% % L1 =  64.0630   60.3250   60.1527; 
% % L2 = 153.4270  142.0961  126.0887; 
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% l1 and l2 values for next iteration 
% l1 = 64.1 60.4 60.2; 
% l2= 128.8 117 103.7; 

  

  
L1=(ACmx-ACmn)./2^(1/2); 
L2=ACmx-L1; 

 

  A-6 Testing Robot  

  
%% to test the robot 
clear all;clc; 
syms a b  theta  r1 r2 z0 z01 z1 z2 l1 l2  
z0=0;z01=0;z1=0;z2=0; 
 r1=60 ;r2=47 ; 
%  l1=60;l2=120; 
% a=5*pi/3; b=5*pi/3;  l1=90 ;l2=70; % leg1 
% a=0; b=0;  l1=90 ;l2=60; % leg2  
% a=pi/3; b=pi/3; l1=90 ;l2=50;% leg3  
% a=2*pi/3; b=2*pi/3; l1=90 ;l2=50; %leg4  
% a=pi; b=pi; l1=90;l2=60;%leg5 
% a=4*pi/3; b=4*pi/3; l1=90 ;l2=70; %leg6 
%% the initial position 
%  x=0 ;y=0 ;z=130; 
%  c=0 ; d=0 ;e=0; 
%% open mouth1 (estimated) 
%  x=0 ;y=0 ;z=115; 
%  c=.3491 ; d=0 ;e=0; 
 %% open mouth2 (estimated) 
%  x=0 ;y=0 ;z=100; 
%  c=.5236 ; d=0 ;e=0; 

  

      
      P =x - r2.*sin(b).*sin(e) + z2.*sin(d).*cos(e) +... 
          r2.*cos(b).*cos(d).*cos(e); 
      Q =y - z2.*(cos(d).*sin(c) - cos(c).*sin(d).*sin(e)) +... 
          r2.*cos(b).*(sin(c).*sin(d) + cos(c).*cos(d).*sin(e)) +... 
          r2.*cos(c).*cos(e).*sin(b); 
      S = z + z2.*(cos(c).*cos(d) + sin(c).*sin(d).*sin(e)) -... 
          r2.*cos(b).*(cos(c).*sin(d) - cos(d).*sin(c).*sin(e)) +... 
          r2.*cos(e).*sin(b).*sin(c); 
      AC=((P-r1.*cos(a)).^2+(Q-r1.*sin(a)).^2+(S-z1).^2).^(1/2); 
      if AC > 140 & AC<90 
          theta = NAN; 
      else            

       
      H=P.^2+Q.^2+S.^2+z01.^2+r1.^2+l1.^2-l2.^2-2*P.*r1.*cos(a)-... 
          2*Q.*r1.*sin(a)-2*S.*z01; 
      h1=l1.*Q.*cos(a)-l1.*P.*sin(a); 
      h2=l1.*(z01+S);   

           

           
      F = @(theta0,h1,h2,H) 2*h1.*sin(theta0)-2*h2.*cos(theta0)+H;  
      theta0=pi/4; 
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      theta=fzero(@(theta0) F(theta0,h1,h2,H),0); 

  
      end 

 

 

Appendix B 

 

Arduino Codes 

B-1 Code for finding the revolute range of Servo 
#include <Servo.h> // Loading the servo library. 

int pos=0; // initialize the pos variable 

int servoPin=9; // the servo hooked to pin 9 

int servoDelay=25; 

Servo myBaby;// called my Baby 

void setup() {  

   Serial.begin(9600); 

   myBaby.attach(servoPin); 

} 

void loop() { 

   Serial.println(" the Position"); // promt user for input 

   while (Serial.available()==0){ 

    } 

   pos=Serial.parseInt();// read user input 

   myBaby.write(pos); // write pos to servo 

  } 
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B-2 Code for the opening-closing movement 
#include <Servo.h> 

 

 

// define our servos 

Servo servo1; 

Servo servo2; 

Servo servo3; 

Servo servo4; 

Servo servo5; 

Servo servo6; 

// Srvo position in degrees 

int servoPos =0; 

void setup () 

{ 

  //Define servo signal input (Digital PWM 1-2-3-4-5-6) 

 servo1.attach(3); 

  servo2.attach(5); 

  servo3.attach(6); 

  servo4.attach(9); 

  servo5.attach(10); 
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  servo6.attach(11); 

   

   

  } 

  void loop() 

  { 

  // Scan from 30 to 150 degrees 

  for(servoPos = 20; servoPos < 80; servoPos += 15) 

  { 

    servo1.write(servoPos); 

    servo6.write(servoPos); 

  } 

  for(servoPos = 20; servoPos < 60; servoPos += 10) 

  { 

    servo2.write(servoPos); 

    servo5.write(servoPos);    

  } 

   for(servoPos = 20; servoPos < 40; servoPos +=5) 

  { 

    servo3.write(servoPos); 

    servo4.write(servoPos);   
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  } 

   

   

  // now scan back from 150 to 30 degrees 

    for(servoPos = 80; servoPos > 20; servoPos -=15) 

  { 

    servo1.write(servoPos); 

    servo6.write(servoPos); 

  

  }    

  // now scan back from 150 to 30 degrees 

    for(servoPos = 60; servoPos > 20; servoPos -=10) 

  { 

    servo2.write(servoPos); 

    servo5.write(servoPos); 

 }   

  // now scan back from 150 to 30 degrees 

    for(servoPos = 40; servoPos > 20; servoPos -=5) 

  { 

    servo3.write(servoPos); 
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    servo4.write(servoPos); 

  } 

   

  } 

 

 

 

Appendix C 
 

Profiles of parts 

C-1 Ball Socket Cab 
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C-2 End Effector 

 

 

C-3 First Link of Leg  
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C-4 Part A of Base 

 

C-5 Part B of Base 
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C-6 Part 1 of Frame 

 

C-7 Part 2 of Frame 
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C-8 Part 3 of Frame 

 

C-9 Part 4 of Frame  
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C-10 HS - 5065MG Servo 
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C-11 Arduino UNO 

 

 

 


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	8-2018

	Design of Parallel Robot for Dental Articulation and Its Optimization
	Abulimiti Delimulati

	tmp.1532983838.pdf.w6Hfp

